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Abstract

In recent years, the availability of large, complete cluster samples has enabled numerous cosmological parameter
inference analyses using cluster number counts. These have provided constraints on the cosmic matter density Ωm

and the amplitude of matter density fluctuations σ8 alternative to that obtained from other standard probes.
However, systematics uncertainties, such as the mass calibration bias and selection effects, may still significantly
affect these data analyses. Hence, it is timely to explore other proxies of galaxy cluster cosmology that can provide
cosmological constraints complementary to those obtained from cluster number counts. Here we use measurements
of the cluster sparsity from weak-lensing mass estimates of the LC2-single and HSC-XXL cluster catalogs to infer
constraints on a flat ΛCDM model. The cluster sparsity has the advantage of being insensitive to selection and
mass calibration bias. On the other hand, it primarily constrains a degenerate combination of Ωm and σ8 (along
approximately constant curves of s= WS 0.3m8 8 and, to a lesser extent, the reduced Hubble parameter h. Hence,
in order to break the internal parameter degeneracies, we perform a combined likelihood analysis of the cluster
sparsity estimates with cluster gas mass fraction measurements and BAO data. We find marginal constraints that
are competitive with those from other standard cosmic probes: Ωm= 0.316± 0.013, σ8= 0.757± 0.067
(corresponding to S8= 0.776± 0.064), and h= 0.696± 0.017 at 1σ. Moreover, assuming a conservative
Gaussian prior on the mass bias of gas mass fraction data, we find a lower limit on the gas depletion factor
Yb,500c 0.89.

Unified Astronomy Thesaurus concepts: Cosmological parameters from large-scale structure (340); Cosmology
(343); Galaxy clusters (584)

Supporting material: machine-readable tables

1. Introduction

There is a widespread consensus that observations of galaxy
clusters can provide a wealth of cosmological information (see,
e.g., Allen et al. 2011; Kravtsov & Borgani 2012, for a review).
In recent years, the potential to probe cosmology with galaxy
clusters has been explored thanks to numerous survey
programs. These have provided increasingly large cluster data
sets from X-ray observations of the intracluster gas (see, e.g.,
Ebeling et al. 2010; Pierre et al. 2016; Böhringer et al. 2017),
the detection of the Sunyaev–Zel’dovich (SZ) effect in the
cosmic microwave background (CMB) radiation (see, e.g.,
Marriage et al. 2011; Planck Collaboration 2014; Bleem et al.
2015; Planck Collaboration 2016), and measurements of galaxy
overdensities (Rykoff et al. 2016; Maturi et al. 2019).

The availability of complete cluster samples has enabled
cosmological parameter inference analyses from cluster
number count measurements (de Haan et al. 2016; Planck
Collaboration 2016; Schellenberger & Reiprich 2017; Pacaud
et al. 2018; Bocquet et al. 2019; Abbott et al. 2020; Lesci et al.
2020). Quite remarkably, these studies have consistently found
values of the amplitude of linear matter density fluctuations on
the 8 Mpc h−1 scale σ8 (h being the reduced Hubble parameter)
and the cosmic matter density Ωm, which differs from that of
the Planck primary CMB analysis (Planck Collabora-
tion 2016, 2018). As an example, the analyses of the SZ
cluster counts from Planck (Planck Collaboration 2014, 2016)

and the South Pole Telescope (SPT; Bocquet et al. 2019), as
well as the cluster counts from the Dark Energy Survey Year 1
(DES-Y1; Abbott et al. 2020), have resulted in lower values of

s= WS 0.3m8 8 compared to those from the Planck primary
CMB. Similar results have been obtained using measurements
of galaxy clustering from gravitational-lensing shear data (see,
e.g., Hildebrandt et al. 2017; Joudaki et al. 2018; Troxel et al.
2018; Joudaki et al. 2020). However, in the case of cluster
number counts, the tension may result from systematic effects,
since the statistical significance of the discrepancy depends on
the amplitude of the cluster mass calibration bias (see, e.g.,
Planck Collaboration 2016; Salvati et al. 2019). This is because
the masses of the Planck-SZ cluster have been estimated using
scaling relations calibrated on X-ray mass estimates. The latter
are derived under the hydrostatic equilibrium (HE) hypothesis;
consequently, any departure from the HE can introduce a
systematic bias that propagates into the cosmological parameter
inference analysis. However, the level of mass bias necessary
to reconcile the Planck-SZ cluster counts with the Planck
primary CMB results contrasts with expectations from hydro-
dynamical simulations of galaxy clusters (see, e.g., Rasia et al.
2012; Lau et al. 2013; Biffi et al. 2016; Barnes et al. 2020), as
well as the bias estimated from the analyses of clusters for
which accurate lensing or X-ray data are available (Hoekstra
et al. 2015; Sereno et al. 2017; Eckert et al. 2019; Zubeldia &
Challinor 2019; Makiya et al. 2020). Departures from the
standard cosmological scenario can also account for such
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discrepancies. As an example, the presence of massive
neutrinos has been shown to alleviate the tension (Salvati
et al. 2018). Similarly, selection effects cannot be a priori
excluded (see, e.g., Chen et al. 2020, for a study of the impact
of mass bias in weak-lensing shear-selected cluster samples).
Hence, it is timely to investigate other galaxy cluster
observables that can provide model parameter constraints
alternative to those inferred from cluster number counts.

Cosmological information is encoded in the internal mass
distribution of clusters. This is because the massive dark matter
halos that host these structures have assembled through a
hierarchical process that depends on the cosmic matter content,
expansion rate, and amplitude of initial matter density fluctua-
tions. The analysis of N-body simulations has shown that the
density profile of halos is described by the Navarro–Frenk–White
(NFW) formula (Navarro et al. 1997), such that for a halo of a
given mass M, its profile only depends on the concentration
parameter c. Numerical studies have subsequently shown that the
median halo concentration as function of the halo mass depends
on the specificities of the simulated cosmological model (see,
e.g., Bullock et al. 2001; Zhao et al. 2003; Dolag et al. 2004;
Zhao et al. 2009; Giocoli et al. 2012). This has suggested that
measurements of the halo concentration from observations of a
sample of galaxy clusters can provide cosmological constraints.
However, the use of the c−M relation as cosmological proxy
suffers of several drawbacks. First, astrophysical processes
affecting the baryon distribution in the inner region of clusters
may alter the estimated concentration–mass relation, thus
inducing a systematic error in the cosmological analysis (Duffy
et al. 2008; Mead et al. 2010; King & Mead 2011). Second,
selection effects may have a strong impact on the cosmological
parameter inference (Sereno et al. 2015). Hence, using measure-
ments of the concentration of galaxy clusters to test cosmology
has proven to be very challenging (see, e.g., Ettori et al. 2010).

Alternatively, Balmès et al. (2014) proposed that the
sparsity, i.e., the ratio of the halo mass within radii enclosing
different overdensities, can provide a nonparametric character-
ization of the mass distribution in halos while retaining the
cosmological information encoded in the halo mass profile.
More recently, Corasaniti et al. (2018) showed that the halo
sparsity provides a cosmological proxy that is insensitive to
selection and mass calibration bias. Furthermore, as the halo
sparsity quantifies the excess of mass within a spherical shell
comprised between two radii relative to the mass enclosed in
the inner one, it is a sensitive probe of the screening mechanism
in modified gravity scenarios (Corasaniti et al. 2020).

Here we infer cosmological parameter constraints on the Ωm,
σ8, and h of a flat ΛCDM model using estimates of the average
sparsity of clusters from weak-lensing cluster mass in
combination with cosmic distance measurements from baryon
acoustic oscillations (BAOs) and cluster gas mass fractions
from archival data.

The paper is organized as follows. In Section 2, we describe
the methodology; in Section 3, we describe the data sets used;
and in Section 4, we present the results. In Section 5, we
discuss the conclusions.

2. Methodology

2.1. Halo Sparsity

Originally introduced by Balmès et al. (2014), the halo
sparsity provides a nonparametric characterization of the mass

profile of halos in terms of the ratio of masses within radii
enclosing two different overdensities (in units of the critical or
background density), namely,
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where DM 1 and DM 2 are the halo masses at overdensities Δ1 and
Δ2, respectively, with Δ1<Δ2. As shown in Balmès et al.
(2014), this provides an observational proxy of the cosmolo-
gical information encoded in the halo mass profile. This is
because the mass distribution within halos is the result of the
hierarchical halo assembly process that depends on the growth
and initial amplitude of the matter density fluctuations, which,
in turn, depend on the cosmological parameters.
The analysis of N-body simulations has shown that the halo

sparsity varies weakly with halo mass. This has very important
consequences, since it implies that the halo ensemble average
value of the sparsity at a given redshift and for a given
cosmology can be predicted from the halo mass function at the
overdensities of interest as given by Balmès et al. (2014),
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this can be solved numerically for á ñD Ds ,1 2 given the functional
form of the halo mass functions Ddn dM 1

and Ddn dM 2
,

respectively. The validity of Equation (2) has been extensively
tested using halo catalogs from high-resolution large-volume
N-body simulations in Corasaniti et al. (2018) and Corasaniti &
Rasera (2019), and we refer readers to these publications for
further details. In particular, for the halo masses used in this
work, namely, M200c and M500c, which correspond to masses
within radii enclosing the overdensity Δ= 200 and 500,
respectively (in units of the critical density ρc), the analysis of
the N-body halo catalogs has shown that Equation (2) is valid
to better than the percent level (see, e.g., Table 1 in Corasaniti
& Rasera 2019). Hence, Equation (2) sets a quantitative
framework to perform cosmological parameter inference
analyses using measurements of the average galaxy cluster
sparsity.
Here we predict the average halo sparsity for a given

cosmology at a given redshift by solving Equation (2). In the
following, we assume a parameterization of the halo mass
function as given by the Sheth–Tormen (ST) formula (Sheth &
Tormen 1999),
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where ρm is the mean matter density; δc is the linearly
extrapolated spherical collapse threshold, which we compute
using the formula by Kitayama & Suto (1996); and
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is the variance of the linear density field smoothed on a
spherical volume of radius R enclosing the mass
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and P(k, z) being the linear matter power spectrum at a given
redshift z, which we compute assuming the linear transfer
function from Eisenstein & Hu (1998). Notice that due to the
exponential cutoff of the halo mass function at large masses,
the upper limits in the integrals of Equation (2) can be set to an
arbitrarily large value without affecting the evaluation. Thus,
we have set = -M M h10c500

max 16 1
 . In the case of the lower

limits, we have set = -M M h10c500
min 13 1

 consistently with the
lowest mass in our cluster catalogs. However, we have found
that the solution of Equation (2) is insensitive to the specific
choice of M c500

min due the weak dependence of the halo sparsity
on the halo mass.

In order to account for the redshift and cosmology
dependence of the mass function at the overdensities of
interest, we adopt the parameterization of the ST coefficients a,
p, and A given by Equation (12) in Despali et al. (2016), which
we refer to as ST-Despali. As shown in Corasaniti et al. (2018),
the average sparsity depends primarily on σ8 and Ωm, which are
highly degenerate, and to a lesser extent on h.

The computation of the average halo sparsity has been
performed using a modified version of the numerical code
Halo_Sparsity5 (Corasaniti 2021), which we have speci-
fically developed for the work presented here.

2.2. Sparsity Systematic Errors

2.2.1. Halo Mass Function Parameterization

Using the N-body halo catalogs from the RayGalGroupSims
simulation of a ΛCDM model, Corasaniti et al. (2018) showed
that ST-Despali parameterization reproduces the average halo
sparsity to better than a few percent accuracy in the redshift
range 0.5 z 1.2, while at lower and higher redshifts,
differences increase up to ∼15%. In the case of the Tinker
et al. (2008) parameterization of the halo mass function,
deviations from the N-body simulation results are much larger,
and we do not consider them here. Instead, a parameterization
of the ST coefficients on the RayGalGroupSims halo catalogs
(see Equations (A4) and (A5) in Corasaniti et al. 2018) gives
average sparsity estimates that reproduce the N-body simula-
tion results to a subpercent level at all redshifts. We will refer to
this parameterization as ST-RayGal.

As discussed in Corasaniti et al. (2018), the systematic
deviation from the ST-Despali parameterization is twofold. On
the one hand, the ST-Despali parameterization has been
calibrated on halo catalogs from a suite of cosmological
simulations that covers a volume that is eight times smaller
than that of the RayGalGroupSims, thus resulting in a less
accurate determination of the mass function at the high-mass
end. On the other hand, the calibration has been realized using
halo catalogs that contain different halos at different over-
densities, rather than the same halos with masses estimated at
different overdensities, as expected from Equation (2). Since
modeling errors on the average sparsity prediction due to the
halo mass function can induce a systematic bias on the

cosmological parameter analysis (see Section 3.1 in Corasaniti
et al. 2018), we correct the ST-Despali prediction using the
results from the halo catalogs of the RayGalGroupSims
simulation (see Appendix A).

2.2.2. Radial Dependent Halo Mass Bias

The halo sparsity, being a mass ratio, is by definition exempt
from constant mass calibration bias. Furthermore, being nearly
independent of the halo mass, it is also insensitive to selection
effects, as shown in Corasaniti et al. (2018). In contrast, the
presence of a radial dependent mass bias can introduce a
systematic error. As an example, astrophysical processes can
alter the inner region of the dark matter halo profile while
leaving the external regions unaltered. This can induce a radial
dependent bias on the mass estimation. In Corasaniti et al.
(2018), this has been investigated in the case of hydrostatic
masses. Here we focus instead on weak-lensing mass
measurements that probe the outer regions of the dark matter
distribution in clusters differently from X-ray observations. We
estimate the level of bias that such an effect induces on the
sparsity s200,500 using the mass bias estimates at M200c and
M500c obtained in Lee et al. (2018, see their Figure 2) for halos
with M200c� 1014 Me from the catalogs of the Cosmo-OWLS
simulations (Le Brun et al. 2014). These are N-body/hydro
simulations that account for astrophysical feedback from
supernovae and active galactic nuclei (AGNs). In the case of
an extreme astrophysical feedback model (AGN 8.7 in Le Brun
et al. 2014), we find that the relative variation of the halo
sparsity varies from ∼5% at the low-mass end (M200c∼ 1014

Me) to ∼3% at the high-mass end (M200c∼ 1015 Me). In the
case of a more realistic feedback scenario, for which the profile
of the simulated clusters reproduces that of the observed X-ray
clusters (AGN 8.0 in Le Brun et al. 2014), we find a smaller
effect with a relative variation limited to 3% over the same
mass interval.
Another source of radial dependent mass bias in weak-

lensing observations results from fitting a spherically sym-
metric NFW profile (Navarro et al. 1997) to tangential shear
profile measurements. Deviations from the sphericity of the
halo mass distribution and projection effects may induce
systematic errors on the estimated mass at different radii. This
has been studied in Becker & Kravtsov (2011). Using the mass
bias estimates at Δ= 200 and 500 (in units of the critical
density) quoted in their Tables 3 and 4, we find a relative
variation of the sparsityΔs200,500/s200,500 3% at z= 0.25 and
2% at z= 0.5.
All of these effects are smaller compared to the systematic

error due to the modeling of the mass function previously
discussed and much smaller than the current uncertainties on
weak-lensing mass determinations from shear profile measure-
ment errors (see Section 3.1). These sources of bias are also
small when compared to the intrinsic scatter in weak-lensing
mass estimates, which is of the order of 20%–40% per cluster
(Becker & Kravtsov 2011; Sereno & Ettori 2015).

2.3. Gas Mass Fraction

The halo sparsity is primarily sensitive to a degenerate
combination of σ8 and Ωm, while it has a weaker dependence
on h (Corasaniti et al. 2018). Hence, estimates of the cluster gas
mass fraction, fgas, from X-ray observations of galaxy clusters
can break the internal parameter degeneracies. This is because

5 The code Halo_Sparsity is publicly available at https://github.com/
pierste75/Halo_Sparsity.
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fgas probes the cosmic baryon fraction, i.e., the ratio of the
mean baryon density Ωb to the mean matter density Ωm,
fb=Ωb/Ωm, as well as the angular diameter distance DA(z)
(see, e.g., White et al. 1993; Ettori et al. 2002; Allen et al.
2004; Ettori et al. 2009).

Following Allen et al. (2008), we model the relation between
the gas mass fraction fgas,Δ estimated within a radius enclosing
a given overdensity Δ and the baryon fraction fbar at a given
redshift as

=
W
W

-D D D Df K Y
D z

D z
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where DA is the angular diameter distance, and DA
fid is the

angular diameter distance of the fiducial cosmological model
assumed to infer the gas mass fraction measurement. This
derives from the fact that we focus on X-ray-based estimates
such that =D D Df M Mgas,

gas tot, where =D D DM M Ktot HE and

DMHE is the cluster mass obtained assuming HE. Hence,
differently from the halo sparsity, fgas,Δ also depends on
uncertain quantities that parameterize the baryonic content of
clusters, such as the mass calibration bias º - =D DK b1

D DM MHE tot, the gas depletion factor Yb,Δ, and the stellar fraction
f*,Δ

6. These play the role of nuisance parameters. To be as
conservative as possible, we have tested the stability of our
results for different assumptions on these parameters.

2.4. BAO Cosmic Distance

Cosmic distance measurements from BAO analyses provide
cosmological parameter constraints that are complementary to
those inferred from estimates of the cluster sparsity and gas
mass fraction. Here we focus on measurements of the
spherically averaged cosmic distance relative to the sound
horizon at the drag epoch at different redshifts, DV(z)/rd. The
spherically averaged cosmic distance is defined as
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We approximate the cosmological dependence of the sound
horizon at the drag epoch as (see, e.g., Aubourg et al. 2015)
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with ωm,b=Ωm,bh
2. In Table 3, we quote the measurements we

have used in our analysis.

3. Data Sets

3.1. Weak-lensing Cluster Mass Measurements

We estimate the sparsity of galaxy clusters using lensing
mass measurements from publicly available cluster catalogs at
M500c andM200c. In particular, we consider a selected sample of

clusters from the Literature Catalogs of Lensing Clusters (LC2;
Sereno 2015) that includes as subsets the PSZ2Lens (Sereno
et al. 2017) and the Cluster Lensing and Supernova Hubble
(CLASH) project (Postman et al. 2012) catalogs. In addition,
we consider the Subaru Hyper Suprime-Cam (HSC) lensing
mass determinations (Umetsu et al. 2020) of an X-ray-selected
cluster sample from the XXL-XMM survey (Pierre et al. 2016),
which we refer to as the HSC-XXL sample.
The LC2-single cluster catalog consists of weak-lensing

cluster masses from archival data; at the time of this analysis,
the latest version7 included 672 entries at redshifts z< 1.7. We
specifically focus on a selected subset of 187 clusters for which
cluster masses at M200c and M500c have been inferred from a
two-parameter fit of the shear lensing profile.8 This is because
mass estimates from a one-parameter fit, such as those obtained
assuming the singular isothermal sphere (SIS) or the NFW
profile with a fixed concentration–mass relation, result in a
biased determination of the halo sparsity (see Appendix B). Out
of this data set, we discard six clusters that we found to be
outliers in the distribution of the sparsity of clusters within the
same redshift bin (see Appendix C). Hereafter, we will refer to
this subsample as Selected LC2-single clusters containing 181
entries. This includes mass estimates from the PSZ2Lens
catalog (Sereno et al. 2017), which is a statistically complete
and homogeneous sample of 35 galaxy clusters at z< 0.7 from
the second Planck Catalogue of Sunyaev–Zel’dovich Sources
(Planck Collaboration 2016) with weak-lensing data from the
Canada–France–Hawaii Telescope Lensing Survey (Heymans
et al. 2012) and the Red Cluster Sequence Lensing Survey
(Hildebrandt et al. 2016). The HSC-XXL lensing mass catalog
(Umetsu et al. 2020) consists of 136 X-ray-selected clusters in
the redshift range 0.031< z< 1.033. Therefore, our total
sample contains 317 clusters (see Table 1).
In Figure 1, we plotM200c versus M500c for the clusters in the

Selected LC2-single sample, the PSZ2Lens subsample, and the
HSC-XXL data set. Estimates of the correlation coefficient
between the two mass measurements are only available for the
PSZ2Lens subsample; these are shown in the inset plot. We see
that, because the sparsity is very weakly dependent on the
selection effects, data from homogeneous samples such as
PSZ2Lens or HSC-XXL are in very good agreement with the
heterogeneous Selected LC2-single clusters. This appears more
clearly in Figure 2, where we have plotted the average sparsity
for the different samples in redshift bins of size Δz= 0.1
containing at least two clusters per bin. We can see that the
different estimates are consistent with each other within the
statistical errors. The uncertainties on the sparsity of individual
clusters have been evaluated through the error propagation of
the cluster mass uncertainties, where we have conservatively
assumed a r= 0.9 correlation, a value that is smaller than the
correlation estimated in the PSZ2Lens sample.9 In the inset
plot in Figure 2, we show the average sparsity in redshift
bins of size Δz= 0.1 for the combined sample Selected
LC2-single+HSC-XXL, which we have used in the cosmolo-
gical analysis. We have further tested the robustness of these

6 Here we assume that f*,Δ is independent of the cluster mass.

7 We use version 3.8, publicly available at http://pico.oabo.inaf.it/~sereno/
CoMaLit/LC2/.
8 For the clusters analyzed in Klein et al. (2019), we considered the masses
from the two-parameter fits reported among the others in LC2-all, rather than
the one-parameter fit results listed in LC2-single.
9 It is worth remarking that, being a mass ratio, the error propagation of mass
uncertainties on individual sparsity measurements results in smaller errors the
larger the correlation between the mass estimates.
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estimates by testing the validity of the average halo sparsity
consistency relations (see Appendix D).

3.2. Cluster Gas Mass Fraction Data

Estimates of the gas mass fraction in clusters can be obtained
from measurements of the temperature and density of the
intracluster X-ray-emitting gas. Here we focus on measure-
ments of fgas within R500c. Our data set consists of gas mass
fraction measurements of 12 clusters at z 0.1 from X-COP
(Eckert et al. 2019), a sample of 44 clusters in the range
0.1 z 0.3 investigated in Ettori et al. (2010), and a higher-
redshift sample of 47 clusters from Ghirardini et al. (2017) in
the redshift range 0.4 z 1.2. The clusters from these
samples are massive systems with M200c 1014Me h−1. The
gas mass fraction measurements have been inferred through a
backward model analysis, which fits the measured temperature
profile against that predicted by solving the HE equation (Ettori
et al. 2002). In addition, we have used gas mass fraction
estimates of three high-redshift X-ray clusters in the redshift
range 0.9 z 1.1 derived in Bartalucci et al. (2018). A
compilation of the data set is given in Table 2. The fiducial
cosmology assumed in all of these analyses is a flat ΛCDM

Table 1
Galaxy Clusters from the Selected LC2-Single and HSC-XXL Catalogs

Name z M200c M500c s200,500
(1014 Me) (1014 Me)

400d-0159 + 0030 0.390 4.89 ± 2.15 3.45 ± 1.52 1.42 ± 0.28
ABELL-291 0.196 8.51 ± 2.06 4.51 ± 0.99 1.89 ± 0.20
ACT-CL-J0204.8-0303 0.549 4.37 ± 1.61 2.99 ± 1.10 1.46 ± 0.24
ACT-CL-J0205.2-0439 0.968 3.61 ± 2.23 2.56 ± 1.58 1.41 ± 0.39
PSZ2-G167.98-59.95 0.140 2.65 ± 1.30 1.79 ± 0.81 1.48 ± 0.32
ACT-CL-J0215.3-0343 1.004 5.64 ± 3.25 4.05 ± 2.33 1.39 ± 0.36
RCS-J0220.9-0333 1.030 3.94 ± 2.09 2.89 ± 1.21 1.37 ± 0.32
RCS-J0221.6-0347 1.020 1.54 ± 0.61 1.24 ± 0.46 1.24 ± 0.21
ACT-CL-J0221.7-0346 0.432 6.05 ± 1.59 3.91 ± 1.03 1.55 ± 0.18
XLSS-J022303.0-043622 1.220 27.74 ± 27.91 9.67 ± 5.62 2.87 ± 1.56

Note. Columns from left to right specify the cluster’s name, redshift, weak-lensing estimated masses M200c and M500c, and sparsity. This table is published in its
entirety in machine-readable format. A portion is shown here for guidance regarding its form and content.

(This table is available in its entirety in machine-readable form.)

Figure 1. The M500c vs. M200c for the Selected LC2-single sample (red circles)
and the HSC-XXL clusters (open triangles). The values of the correlation
coefficients of the PSZ2Lens cluster masses (yellow squares) are shown in the
inset plot.

Figure 2. Average cluster sparsity in redshift bins of size Δz = 0.1 for the
Selected LC2-single (red points), PSZ2Lens (yellow squares), and HSC-XXL
(open triangles) clusters. The average sparsity estimates for the combined
sample Selected LC2-single and HSC-XXL (blue circles) are shown in the inset
plot, and the number of clusters in each bin is given below every data point.

Table 2
Galaxy Cluster Gas Mass Fractions

Name z fgas

A1644 0.0473 0.128 ± 0.008
A85 0.0555 0.150 ± 0.005
A2319 0.0557 0.189 ± 0.008
A3266 0.0589 0.132 ± 0.009
A3158 0.0590 0.145 ± 0.007
A1795 0.0622 0.139 ± 0.005
RXC-J1825 0.0650 0.133 ± 0.005
A644 0.0704 0.132 ± 0.012
A2029 0.0766 0.141 ± 0.005
ZwCl-1215 0.0766 0.106 ± 0.008

Note. Columns from left to right specify the cluster’s name, redshift, and gas
mass fraction. This table is published in its entirety in machine-readable format.
A portion is shown here for guidance regarding its form and content.

(This table is available in its entirety in machine-readable form.)
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model with Ωm= 0.3 and h= 0.7. We bin these measurements
in redshift bins of size Δz= 0.1 (see Figure 3).

The sparsity and gas mass fraction measurements cover a
similar redshift range. It is worth remarking that the X-COP
sample, as well as the data set from Ettori et al. (2010),
exploited XMM data, whereas Ghirardini et al. (2017) was
based on Chandra observations. Gas mass measurements are
mainly based on surface brightness profiles, which are highly
consistent among different X-ray observatories, whereas the
dependence on temperature and metallicity is negligible.

3.3. BAO Data

We use cosmic distance measurements from BAO analyses
to further reduce the effect of cosmological parameter
degeneracies. In Table 3, we quote the measurements we have
used in our analysis. These consist of estimates from the 6dF
Galaxy Survey (6dFGS; Beutler et al. 2011), Sloan Digital Sky
Survey (SDSS) Data Release 7 Main Galaxy Sample (MGS;
Ross et al. 2015), SDSS-III Baryon Acoustic Oscillation
Spectroscopic Survey Data Release 12 (BOSS-DR 12; Alam
et al. 2017), and SDSS-IV extended Baryon Acoustic
Oscillation Spectroscopic Survey Data Release 16 Quasar
Sample (eBOSS-QSO; Neveux et al. 2020), which span a
similar redshift interval as that of cluster sparsity and gas mass
fraction measurements.

4. Cosmological Parameter Inference

A first attempt to perform a cosmological analysis with
measurements of the internal structures of halos (using the
concentration–mass relation) in combination with the gas mass
fraction data was presented in Ettori et al. (2010). As already
mentioned, the use of the halo concentration as cosmological
proxy presents several pitfalls compared to the halo sparsity.
Furthermore, here we take advantage of the availability of a
larger sample of cluster mass fraction data that cover a wider
range of redshifts and thus are more sensitive to the dependence
on DA, as well as the latest cosmic distance estimates from
BAO analyses.

4.1. Markov Chains and Priors

We perform a likelihood Markov Chain Monte Carlo
(MCMC) data analysis of the redshift distribution of average
cluster sparsity estimates in combination with BAO and gas
mass fraction data to infer constraints on the flat ΛCDM model
specified by the following set of parameters: Ωm, σ8, and h. In
order to reduce the impact of parameter degeneracies, we
assume a set of Gaussian priors on the remaining cosmological
parameters. More specifically, we adopt a Big Bang nucleo-
synthesis (Cyburt et al. 2016) prior on the baryon density

Ωbh
2= 0.022± 0.002 and a Planck prior (Planck Collabora-

tion 2018) on the scalar spectral index ns= 0.965± 0.004.
We sample the target parameter space assuming uniform

priors on Ωm∼U(0.1, 0.9), σ8∼U(0.1, 1.8), and h∼U(0.55,
1.20). Where specified, we quote the results obtained under an
HST prior, h= 0.7324± 0.0174 (Riess et al. 2016), and a
Planck prior, h= 0.674± 0.005 (Planck Collaboration 2018).
In the case of fgas, we assume priors on the nuisance parameters

K500c, Yb,500c, and f*,500c within R500c (consistent with the
definition of the gas mass fraction data) as determined from
various works in the literature. We test the results of the parameter
inference assuming a different prior on K500c. In particular, we
consider the following Gaussian priors: = K 0.78 0.09c500

CLASH ,
consistent with the estimate from the analysis of the CLASH
sample (Sereno & Ettori 2015); = K 0.84 0.04c500

CCCP , as given
by the analysis of a sample of clusters in Herbonnet et al. (2020)
from the Canadian Cluster Comparison Project (CCCP; Hoekstra
et al. 2015); and = K 0.65 0.04c500

CMB , consistent with the mass
bias inferred from the joint analysis of the Planck primary CMB,
the Planck-SZ number counts, the Planck-thermal SZ power
spectrum, and the BAO in Salvati et al. (2018). We also consider
the extreme case with a hard prior K500c= 1. As far as the baryon
depletion factor is concerned, we assume a Gaussian prior

= Y 0.938 0.041b c,500
The 300 , consistent with the analysis of

simulated clusters in Eckert et al. (2019) from the Three Hundred
Project (Cui et al. 2018). In order to evaluate the impact
of a redshift variation of the baryon depletion factor, we test
the case of a Gaussian prior with mean =Y zb c,500

FABLE ( )
+ +z z0.931 1 0.017 0.003 2( · · ) and scatter s = 0.04Yb c,500 ,

consistent with the results from the FABLE simulations (Henden
et al. 2020). Finally, we assume a Gaussian prior on the stellar
fraction f*,500c= 0.015± 0.005 consistent with estimates from a
sample of clusters with masses in the same range of those of the
gas mass fraction data set (Eckert et al. 2019). Nevertheless, being
a subdominant term in Equation (6), our results are largely
independent of such a prior.

4.2. Results

We use the Metropolis–Hastings algorithm to generate 15
independent random chains of 3× 105 samples each. We
evaluate the rejection rate every 100 steps and adjust the width
of the random step of the parameters dynamically. We check
the convergence of the chains using the Gelman–Rubin test
(Gelman & Rubin 1992) with a threshold value of R< 1.1. We
derive marginal constraints on Ωm, σ8, h, and s= WS 0.3m8 8

from the analysis of the MCMC chains. Summary tables are
presented in Appendix E.

Figure 3. Averaged gas mass fraction estimates in redshift bins of
size Δz = 0.1.

Table 3
Spherically Averaged Cosmic Distance Measurements from the 6dFGS

(Beutler et al. 2011), SDSS Data Release 7 MGS (Ross et al. 2015), BOSS-DR
12 (Alam et al. 2017), and eBOSS-QSO (Neveux et al. 2020)

Survey z DV/rd

6dFGS 0.106 2.976 ± 0.133
MGS 0.15 4.466 ± 0.168
BOSS-DR 12 0.38 9.994 ± 0.108
BOSS-DR 12 0.51 12.701 ± 0.128
BOSS-DR 12 0.61 14.481 ± 0.149
eBOSS-QSO 1.480 26.51 ± 0.42
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4.2.1. Sparsity and BAO

In Figure 4, we plot the 1σ and 2σ contours in the Ωm–σ8
plane from the analysis of the average sparsity measurements
alone with a uniform-h prior (black dashed lines) and under the
HST (blue solid lines) and Planck (green solid lines) priors. We
also show the constraints derived from the combined analysis
of the average sparsity with the BAO (black solid lines). We
can clearly see that the constraints from the average sparsity
data only are highly degenerate along curves of approximately
constant S8 values (red dotted lines).

In Table 4, we quote the mean and standard deviation of S8 for
the Selected LC2-single clusters under different h priors, as well
as the results obtained for the PSZ2Lens subsample. In the
former case, we find S8= 0.75± 0.20 for the uniform-h prior
while assuming that the HST prior (Planck prior) gives
S8= 0.80± 0.18 (S8= 0.82± 0.16). The mean value of S8
increases for decreasing values of h associated with the HST and
Planck priors. The average sparsity also carries information on
the Hubble parameter. This can be seen in Figure 4, where the
contours inferred from the analysis of the sparsity data alone
shift toward larger S8 values for the HST-h and Planck-h priors.
As can be deduced from the values quoted in Table 4, the
analysis of the average sparsity from the PSZ2Lens subsample
gives results (bottom rows) for the different h priors that are
largely consistent with those from the full cluster catalog, though
with slightly larger 1σ errors (of order ∼10%) due to the smaller
size and reduced redshift interval of the subsample.

Overall, the marginal constraints on S8 from the analysis of
the cluster sparsity are consistent with those inferred from the
sparsity analysis of a sample of X-ray clusters presented in

Corasaniti et al. (2018), where it was found that
S8= 0.87± 0.20 for the HST-h prior.
Including the BAO data10 allows one to break the

degeneracy along the Ωm direction and infer close bounds on
Ωm and σ8. Moreover, because of the dependence of the
average sparsity on the Hubble parameter, we expect the joint
analysis with the BAO data to provide closed bounds on h. In
order to have an appreciation of the derived constraints with
respect to those inferred from other probes, in Figure 4, we plot
the 1σ and 2σ marginalized contours from the Planck primary
CMB cosmological analysis (red and yellow filled contours)
and the Planck-SZ cluster counts (blue and light blue filled
contours). In Table 5, we quote the results of the marginal
statistics from the joint sparsity and BAO analysis obtained
under different h priors.
We find the following marginal constraints (mean and

standard deviation): Ωm= 0.277± 0.029, σ8= 0.856± 0.100
(corresponding to S8= 0.818± 0.070), and h= 0.662± 0.023.
The marginalized posteriors are well approximated by
Gaussian distributions; consequently, we find the best-fit model
parameters to be close to the parameter average values. In
particular, we have W = 0.274m

ˆ , s = 0.8508ˆ (corresponding to
=S 0.8138̂ ), and =h 0.662ˆ . The residuals are shown in

Figure 5.
The joint analysis results in an improvement of the

cosmological constraints with respect to those obtained from
the BAO data alone of a factor of 3 on Ωm and a factor of ∼2
on h. On the other hand, imposing the HST-h (Planck-h) prior
does not significantly improve the uncertainties on Ωm and σ8.
These results are consistent to better than 1σ with those

inferred from the Planck primary CMB cosmological analysis of
the anisotropy power spectra (red and yellow shaded contours):
Ωm= 0.315± 0.007, σ8= 0.811± 0.006, S8= 0.832± 0.013,
and h= 0.6736± 0.0054 (TT, TE, EE+lowE+lensing; see
Table 2 in Planck Collaboration 2018).
The constraints are also consistent with those of the Planck-

SZ cluster count baseline model11 with Ωm= 0.330± 0.030,
σ8= 0.760± 0.033, and S8= 0.796± 0.042, which were
derived under similar assumptions (most notably the combina-
tion of the BBN prior and BAO data).
The comparison indicates that Planck-SZ cluster counts provide

tighter constraints on σ8, while the bounds on Ωm have the
same level of statistical uncertainty. Limits on h were derived in

Figure 4.Marginalized 1σ and 2σ contours in Ωm − σ8 from the analysis of the
average sparsity data only for the uniform-h (black dashed lines), HST-h (blue
solid lines), and Planck-h (green solid lines) and in combination with BAO
cosmic distance measurements (black solid lines). The plus sign corresponds to
the best-fit ΛCDM model with parameter values W = 0.27m

ˆ and s = 0.858ˆ
(and =h 0.66ˆ ). The red dotted lines correspond to constant S8 value curves.
For illustrative purposes, we show the marginalized contours from the
cosmological analysis of the primary Planck analysis of the CMB anisotropy
power spectra (TT, TE, EE+lowE+lensing; Planck Collaboration 2018) and
the Planck-SZ cluster analysis for their baseline model with a BBN prior, BAO
data, and a CCCP prior on the mass bias (Planck Collaboration 2016).

Table 4
Mean and Standard Deviation of S8 from the Analysis of the Average Sparsity
of the Selected LC2-Single Catalog (Top Rows) and the PSZ2Lens Subsample

(Bottom Rows)

Sparsity Only

Cluster Sample and h Prior S8

Selected LC2-Single + uniform 0.75 ± 0.20
Selected LC2-Single + HST 0.80 ± 0.18
Selected LC2-Single + Planck 0.82 ± 0.16

PSZ2Lens + uniform 0.69 ± 0.22
PSZ2Lens + HST 0.73 ± 0.21
PSZ2Lens + Planck 0.75 ± 0.19

10 We infer the following cosmological parameter constraints from the MCMC
likelihood analysis of the BAO data alone for a flat ΛCDM model:
Ωm = 0.387 ± 0.089 and h = 0.718 ± 0.043.
11 We are grateful to Richard Betty for providing us with the MCMC chains of
the CCCP+BAO+BBN baseline model from the Planck-SZ data analysis
(Planck Collaboration 2016).
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Planck Collaboration (2016), though the values of the marginal
statistics were not quoted. Here we have analyzed the chains that
were made available to us and obtained h= 0.693± 0.027, which
is consistent with the constraints on h we have inferred from the
joint sparsity and BAO analysis. Nonetheless, it is worth noticing
that the constraints from the Planck-SZ analysis are dominated by
the BAO data set used in Planck Collaboration (2016), as no
constraints would be inferred from the use of the cluster counts
only (J. B. Melin, 2021 private communication). This is not the
case for the BAO data used here.

The comparison with other cluster number count analyses is
less straightforward, since constraints on the cosmological
parameters were derived under very different priors.

4.2.2. Sparsity and Gas Mass Fraction

Cluster gas mass fraction data can be used to break the Ωm− σ8
degeneracy that characterizes the constraints from the average
sparsity. However, different from the BAO, the possibility of
deriving robust constraints on Ωm, σ8, and h depends on the
sensitivity of the gas mass fraction data to the priors assumed on
the baryon depletion factor and the mass calibration bias. This is

because such parameters appear as multiplicative factors in
Equation (6), thus resulting in the h3/2 dependence being highly
degenerate with Ωb/Ωm, K500c, and Yb,500c.
In Figure 6, we plot the 1σ and 2σ contours in the Ωm–σ8

plane from the joint analysis of the average sparsity and gas
mass fraction data obtained under different K500c and Yb,500c
priors. The marginal constraints on Ωm, σ8, S8, and h are
summarized in Table 6. The red shaded area in Figure 6
highlights the degeneracy of the average sparsity along curves
of constant S8= 0.83± 0.07 values, the mean and standard
deviation of the S8 estimates for the various prior configura-
tions quoted in Table 6 (top rows). The inset plots show the
marginal statistics of h (left inset) and Ωm (right inset) as a
function of the K500c prior for the Yb c,500

The300 case. We may notice
that, depending on the K500c prior, the gas mass fraction data
break the Ωm− σ8 degeneracy along different locations of the
S8 curve. This is because, for a given Yb,500c and Ωb prior, there

Table 5
Mean and Standard Deviation of Ωm, σ8, S8, and h from the Joint Analysis of the Average Sparsity and BAO Data

Sparsity + BAO

h Prior Ωm σ8 S8 h

Uniform 0.277 ± 0.029 0.856 ± 0.100 0.818 ± 0.070 0.662 ± 0.023
HST 0.318 ± 0.029 0.756 ± 0.089 0.775 ± 0.071 L
Planck 0.285 ± 0.023 0.833 ± 0.088 0.809 ± 0.069 L

Figure 5. Residuals of the average sparsity (top panel) and BAO (bottom
panel) data with respect to the best-fit ΛCDM model with parameter values
W = 0.274m
ˆ , s = 0.8508ˆ , and =h 0.662ˆ .

Figure 6. Marginalized 1σ and 2σ contours in Ωm − σ8 from the combined
analysis of the average sparsity and gas mass fraction data for different sets of
priors: Yb c,500

The300 and K c500
CMB (dotted black lines), Yb c,500

The300 and K c500
CLASH (dashed–

dotted black lines), Yb c,500
FABLE and K c500

CLASH (dashed–dotted blue lines), Yb c,500
The300 and

K c500
CCCP (dashed black lines), and Yb c,500

The300 with K500c = 1 (solid black lines). The
red shaded region corresponds to curves of constant S8 = 0.83 ± 0.07 values,
that is, the mean and standard deviation of the different S8 estimates quoted in
Table 6. As in Figure 4, we plot the contours from the Planck primary CMB
and Planck-SZ cluster count analyses, respectively. The inset plots show the
mean and standard deviation of h (left inset) and Ωm (right inset) as function of
the K500c prior. In the left inset, the light blue and blue shaded areas correspond
to the HST-h and Planck-h priors, respectively.

8

The Astrophysical Journal, 911:82 (15pp), 2021 April 20 Corasaniti, Sereno, & Ettori



is a compensation between the fitting values of h and Ωm and
the prior value of K500c. In particular, the smaller the K500c

prior, the larger the value of h and the smaller the value of Ωm

necessary to fit the same gas mass fraction data. As a result, the
gas mass fraction data break the S8 degeneracy of the cluster
sparsity at larger σ8 values for smaller K500c priors. This is
consistent with the trend shown in Figure 6, where the contours
shift from the upper left to the lower right for increasing values
of the K500c prior, while the average inferred value of h(Ωm)
shown in the left (right) inset plot decreases (increases). For
comparison, we have tested the Yb c,500

FABLE prior for the K c500
CLASH

case and find no statistically significant differences with respect
to the Yb c,500

The300 prior. As can be seen in Figure 6, only the
constraints derived under the hard K500c= 1 prior are margin-
ally consistent with those from the Planck primary CMB
analysis.

We find that imposing the HST and Planck priors tends to
slightly shift the parameter constraints toward larger Ωm and
smaller σ8 values (see values quoted in the middle and bottom
rows in Table 6). Nevertheless, the inconsistencies among the
different gas mass fraction prior model parameter assumptions
remain unsolved. Most notably, in the case of the K c500

CMB prior,
we find constraints on Ωm and σ8 that lie 2σ from the Planck
results. This suggests that the low value of K c500

CMB stands in
contrast to not only expectations from numerical simulations of
clusters and direct estimates of the mass calibration bias from
galaxy cluster samples but also the gas mass fraction
measurements we have considered here.

Given the large scatter in the prior values of the baryon
depletion factor and mass calibration (and the impact that such
priors have on the cosmological parameter inference), it is
advisable to simply treat them as nuisance parameters and
marginalize over large uniform priors. However, because of the
degeneracy with h, this may result in weak cosmological
parameter constraints. Hence, an external independent data set
such as the BAO is required to isolate the h dependence of gas
mass fraction data and infer tighter bounds on the other
cosmological parameters. This is what we investigate next.

4.2.3. Joint Analysis

Here we present the results of the joint likelihood analysis of
average cluster sparsity, gas mass fraction, and BAO data. To
be as conservative as possible, we infer marginalized bounds
over uniform priors on the gas mass fraction nuisance
parameters. More specifically, we uniformly sample the gas
depletion factor Yb,500c∼U(0.7, 1.0) and the mass calibration
bias K500c∼U(0.6, 1.0) over interval values that include the
Gaussian priors previously discussed.
In Figure 7, we show the 1D marginalized posteriors, and in

Figure 8, we plot the marginalized 1σ and 2σ contours in the
Ωm–σ8 plane. As in Figure 4, we plot the contours from the
Planck primary CMB and the Planck-SZ cluster count
cosmological analyses. In Table 7, we quote the results of
the marginal statistics of Ωm, σ8, S8, and h.
We have Ωm= 0.316± 0.013 and σ8= 0.757± 0.067,

which corresponds to S8= 0.776± 0.064 and h= 0.6958±
0.0167. We find the best-fit model parameters to be W =m

ˆ
0.320, s = 0.7388ˆ (corresponding to =S 0.7638̂ ), and

Table 6
Mean and Standard Deviation of Ωm, σ8, S8, and h from the Joint Analysis of the Average Sparsity and Gas Mass Fraction Data for Different Yb,500c, K500,c, and h

Priors

Sparsity + Gas Mass Fraction

fgas and h Priors Ωm σ8 S8 h

Yb c,500
The 300 + K c500

CMB + uniform 0.13 ± 0.01 1.35 ± 0.18 0.90 ± 0.09 1.10 ± 0.05

Yb c,500
The 300 + K c500

CLASH + uniform 0.19 ± 0.03 1.04 ± 0.14 0.82 ± 0.08 0.91 ± 0.06

Yb c,500
FABLE + K c500

CLASH + uniform 0.19 ± 0.03 1.06 ± 0.15 0.83 ± 0.08 0.92 ± 0.07

Yb c,500
The 300 + K c500

CCCP + uniform 0.20 ± 0.02 1.03 ± 0.12 0.83 ± 0.07 0.89 ± 0.05

Yb c,500
The 300 (K500c = 1) + uniform 0.25 ± 0.03 0.86 ± 0.10 0.79 ± 0.07 0.79 ± 0.05

Yb c,500
The 300 + K c500

CMB + HST 0.16 ± 0.01 1.27 ± 0.04 0.92 ± 0.03 L

Yb c,500
The 300 + K c500

CLASH + HST 0.26 ± 0.03 0.85 ± 0.10 0.79 ± 0.07 L

Yb c,500
FABLE + K c500

CLASH + HST 0.26 ± 0.02 0.87 ± 0.07 0.81 ± 0.05 L

Yb c,500
The 300 + K c500

CCCP + HST 0.24 ± 0.02 0.94 ± 0.11 0.83 ± 0.08 L

Yb c,500
The 300 (K500c = 1) + HST 0.27 ± 0.03 0.83 ± 0.09 0.79 ± 0.07 L

Yb c,500
The 300 + K c500

CMB + Planck 0.17 ± 0.01 1.25 ± 0.04 0.94 ± 0.03 L

Yb c,500
The 300 + K c500

CLASH + Planck 0.30 ± 0.03 0.78 ± 0.11 0.78 ± 0.06 L

Yb c,500
FABLE + K c500

CLASH + Planck 0.28 ± 0.01 0.85 ± 0.06 0.83 ± 0.01 L

Yb c,500
The 300 + K c500

CCCP + Planck 0.23 ± 0.02 0.99 ± 0.01 0.87 ± 0.03 L

Yb c,500
The 300 (K500c = 1) + Planck 0.31 ± 0.03 0.74 ± 0.10 0.75 ± 0.07 L

Figure 7. Marginalized 1D posteriors on Ωm (top left panel), σ8 (top right
panel), h (bottom left panel), and S8 (bottom right panel) from the joint analysis
of cluster sparsity, gas mass fraction, and BAO data.
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=h 0.690ˆ . The data residuals with respect to the best-fit model
are shown in Figure 9. Notice that the 1D marginalized
posterior of σ8 (and, consequently, S8) has a slightly fatter tail
than that of Ωm and h, which are well approximated by
Gaussian distributions. This is the reason for the small
difference between the inferred average value of σ8 (and S8)
and the best-fit value of s8ˆ (and S8̂) associated with the peak of
the marginalized posterior. Compared to the constraints
inferred from the joint analysis of the average sparsity with
BAO, the addition of the gas mass fraction data improves the
constraints on Ωm by a factor of 2. The constraints on σ8 and h
are improved with a gain on the 1σ errors at the ∼49% and
∼35% level, respectively. Quite remarkably, we infer 1σ
constraints on h that are competitive with those from the HST
analysis (Riess et al. 2016). As we can see in Figure 9, the
results of the joint analysis are consistent within 1σ with both
the Planck primary CMB and the Planck-SZ cluster count
analyses. Adding priors on h does not significantly improve the
determination of Ωm and σ8.

As expected, we find the gas mass fraction nuisance
parameters to be unconstrained in the prior parameter interval
due to the fact that they are perfectly degenerate. Hence,
assuming a Gaussian prior K c500

CLASH (K c500
CCCP) does not

noticeably improve the constraints on the cosmological
parameters. In contrast, it allows one to infer a lower limit on
Yb,500c 0.89 (Yb,500c 0.91) at 1σ.

In Figures 10 and 11, we show summary plots of state-of-
the-art estimates of S8 (see also Pratt et al. 2019) and h from
various probes.

5. Conclusions

In recent years, the increased availability of large, complete
samples has opened the way to probing cosmology with galaxy
cluster observations. Cosmological parameter constraints have
been primarily inferred from cluster number count data
analyses. These have provided constraints complementary to
those inferred from other standard probes, such as the CMB
anisotropy power spectra. However, several source of systema-
tics may still affect the results of these studies. As an example,
cluster number count measurements from SZ catalogs have
resulted in values of S8 that are lower than those obtained from
the analysis of the Planck anisotropy power spectra (see, e.g.,
Planck Collaboration 2016; Bocquet et al. 2019; Abbott et al.
2020). Errors in the mass calibration of clusters, as well as
selection effects, may be responsible for such discrepancies,
although it cannot be a priori excluded that these are the effect

Figure 8. Marginalized 1σ and 2σ contours in the Ωm–σ8 plane from the
combined analysis of the average cluster sparsity, gas mass fraction, and BAO
data (black lines). As in Figure 4, we plot marginalized contours from the
Planck primary CMB analysis (yellow and red contours) and the Planck-SZ
number counts (dark and light blue contours). The plus sign corresponds to the
best-fit ΛCDM model with parameter values W = 0.320m

ˆ and s = 0.7388ˆ
(and =h 0.690ˆ ).

Table 7
Mean and Standard Deviation of Ωm, σ8, S8, and h from the Joint Analysis of the Average Sparsity, Gas Mass Fraction, and BAO Data

Sparsity + Gas Mass Fraction + BAO

h Prior Ωm σ8 S8 h

Uniform 0.316 ± 0.013 0.757 ± 0.067 0.776 ± 0.064 0.696 ± 0.017
HST 0.325 ± 0.012 0.736 ± 0.066 0.766 ± 0.065 L
Planck 0.306 ± 0.010 0.781 ± 0.061 0.788 ± 0.059 L

Figure 9. Residuals of the average sparsity (top panel), gas mass fraction
(middle panel), and BAO (bottom panel) data with respect to the best-fit flat
ΛCDM model with parameter valuesW = 0.320m

ˆ , s = 0.7388ˆ , and =h 0.690ˆ ,
respectively.
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of novel physics not in the standard ΛCDM model. For this
reason, it is timely to investigate other probes of galaxy cluster
cosmology that may provide independent constraints on the
cosmological parameters. Besides cluster number counts,
measurements of the spatial clustering of galaxy clusters
(Marulli et al. 2018), as well as their internal mass distribution,
carry cosmological information. As an example, Balmès et al.
(2014) showed that measurements of the dark matter halo
sparsity can retrieve the cosmological signal encoded in the
mass profile of halos hosting galaxy clusters. Moreover, these
measurements have been shown to be insensitive to selection
effects and mass calibration errors (Corasaniti et al. 2018).

Here we have derived cosmological constraints from
estimates of the average sparsity of galaxy clusters using
lensing mass measurements. We have used lens mass
measurements from a selected sample of clusters from the
LC2-single catalog (Sereno 2015), together with HSC-XXL
clusters (Umetsu et al. 2020). We have discussed different
sources of systematic errors. In order to break cosmological
parameter degeneracies, we have performed a combined
MCMC likelihood analysis of average sparsity estimates in

combination with gas mass fraction and BAO data. We find
that the combination of these data sets provides competitive
constraints on Ωm, σ8, and h that are consistent with those from
the Planck primary CMB and Planck-SZ cluster counts. In
particular, we find Ωm= 0.316± 0.013, σ8= 0.757± 0.067
(resulting in S8= 0.776± 0.064), and h= 0.696± 0.017.
Compared to other cosmological proxies from galaxy cluster

observations, the sparsity has the advantage of being less
sensitive to systematic errors due to mass calibration bias and
selection effects. In the future, cosmological parameter
uncertainties can be further reduced thanks to the availability
of larger galaxy cluster samples with improved mass estimates,
as well as better gas mass fraction measurements. It is possible
that the combined analysis of cluster sparsity and gas mass
fraction data, together with estimates of the cluster abundance,
may not only provide strong cosmological parameter con-
straints but also allow for an accurate determination of
astrophysical model parameters, such as the gas depletion
factor and the mass calibration bias, that are sources of
systematic uncertainty associated with gas mass fraction and
cluster number count data analyses. We leave this to a future
investigation.

Figure 10. Constraints on S8 from the analysis of the shear lensing data (blue
triangles) of KV450 (Hildebrandt et al. 2018), DES-Y1 (Troxel et al. 2018),
KV450+DES-Y1 (Joudaki et al. 2020), and KV450+BOSS (Tröster
et al. 2020) and the cluster number counts (red squares) of Planck-SZ (Planck
Collaboration 2016), HIFLUGCS (Schellenberger & Reiprich 2017), SPT-SZ
(Bocquet et al. 2019), XXL (Pacaud et al. 2018), and DES-Y1 (Abbott
et al. 2020). The constraints inferred from the combined analysis of cluster
sparsity and BAO (upper yellow circle) and together with the gas mass fraction
(lower yellow circle) data are shown at the top of the plot. The shaded area
corresponds to the 1σ and 2σ limits from the Planck primary CMB analysis
(TT, TE, EE+lowE+lensing; Planck Collaboration 2018).

Figure 11. Constraints on h from various probes: HST (Riess et al. 2016),
DES-Y1+BAO+D/H (Abbott et al. 2018), SPTpol (Henning et al. 2018),
H0LiCOW (Bonvin et al. 2017), SHOES (Riess et al. 2018), CCHP (Freedman
et al. 2019), SPARC (Schombert et al. 2020), TDCOSMO-SLACS (Birrer
et al. 2020), and 8TDGL (Denzel et al. 2021). The constraints inferred from the
combined analysis of cluster sparsity and BAO (upper yellow circle) and
together with the gas mass fraction (lower yellow circle) data are shown at the
top of the plot. The shaded area corresponds to the 1σ and 2σ limits from the
Planck primary CMB analysis (TT, TE, EE+lowE+lensing; Planck
Collaboration 2018).

11

The Astrophysical Journal, 911:82 (15pp), 2021 April 20 Corasaniti, Sereno, & Ettori



A first step in this direction will be the joint study of the
sparsity and gas mass fraction in galaxy clusters from a well-
selected sample of a large number (∼100) of objects homo-
geneously analyzed in their X-ray and lensing signal out to R500
and beyond, such as the one that will be available from the
CHEX-MATE project12 (CHEX-MATE Collaboration et al.
2020).

P.S.C. is grateful to Iacopo Bartalucci for providing data from
his X-ray cluster analysis, Richard Battye for providing the
Planck-SZ chains, Jean-Baptiste Melin for discussions on the
Planck-SZ analysis, and Florian Pacaud for providing the values
of S8 obtained from the XXL cluster number counts. S.E. and
M.S. acknowledge financial contributions from contract ASI-INAF
n.2017-14-H.0 and INAF “Call per interventi aggiuntivi a sostegno
della ricerca di main stream di INAF” No. 1.05.01.86.10. The
research leading to these results has received funding from the
European Research Council under the European Union’s Seventh
Framework Programme (FP/2007–2013)/ERC grant agreement
No. 279954. Data visualizations were prepared with the MATPLO-
TLIB13 library (Hunter 2007).

Appendix A
Average Sparsity Redshift Model Correction

The validity of Equation (2) in predicting the ensemble average
halo sparsity has been extensively tested using N-body halo
catalogs from the RayGalGroupSims simulation of a ΛCDM
model in Corasaniti et al. (2018) and the halo catalogs from the
MultiDark-Planck2 simulation in Corasaniti & Rasera (2019).
These studies have shown that the simulation calibrated mass
functions can predict the average halo sparsity to better than a few
percent accuracy. On the other hand, as already mentioned in
Section 2, assuming the ST-Despali parameterization, Corasaniti
et al. (2018) found that the predicted average sparsity is consistent
with the RayGalGroupSims results within a few percent only in
the redshift range 0.5 z 1.2, while differences increase up to
∼10% at lower and higher redshifts. Such a discrepancy is
essentially due to the fact that the halo catalogs used in the
calibration of the ST-Despali parameterization contain different
halos at different overdensities, rather than identical halos with
masses estimated at different overdensities, as expected from
Equation (2). This induces a selection effect on the calibrated
mass function at the two overdensities of interest that propagates
into average sparsity prediction. This can be seen in Figure 12,
where we plot the difference between the value of the average
sparsity from the ST-Despali parameterization and that measured
from the N-body halos at the redshift snapshots of the
RayGalGroupSims (blue circles) and the MultiDark-Planck2
(red triangles) simulations. Quite importantly, we may notice that
the systematic difference of the ST-Despali prediction with respect
to these N-body results is similar, despite the fact that the two
simulations do not share the same cosmology or posses similar
characteristics,14 thus highlighting the algorithmic nature of this

selection effect. As the RayGalGroupSims has a volume
∼eight times larger than that of the MultiDark-Planck2 run, it
allows us to precisely estimate the average sparsity at z 1,
where the abundance of massive halos hosting galaxy groups
and clusters drops rapidly. Henceforth, we can correct the
systematic shift of the ST-Despali prediction shown in
Figure 12 by introducing a third-order polynomial function of
redshift that well approximate the numerical simulation points,

Dá ñ = + + +s z s s z s z s z , A1200,500 corr
fit

0 1 2
2

3
3( ) · · · ( )

with s0= 0.14073268, s1=− 0.37056373, s2= 0.32410084,
and s3=− 0.07044901.

Appendix B
Biased Sparsity Estimation from Shear Lensing Profile Fits

Weak-lensing masses are usually inferred by fitting the shear
lensing measurements against a parametric shear profile.
Several of these estimates in the literature fit the data with a
one-parameter profile, such as the SIS profile or the NFW
(Navarro et al. 1997), with a fixed concentration–mass relation.
However, this results in biased estimates of the halo sparsity.
In the case of the SIS profile, this can be proven analytically,

since assuming a radial density profile of the form ρ(r)∝ 1/r2

gives a mass within a radius rΔ enclosing an overdensityΔ that
is µ DDM 1 . Consequently, assuming an SIS profile results
in a redshift and cosmology-independent sparsity, such that
assuming Δ= 200 and 500 gives =s 500 200200,500

SIS ,
contrary to the N-body simulation results. In Figure 13, we
plot the biased sparsity values for a cluster sample with masses
M200c equal to the LC2-single clusters. The SIS estimates
correspond to the streak of black points distributed along the
straight line at s200,500; 1.58.
Similarly, sparsity estimates from mass measurements

obtained assuming the NFW profile with a fixed concentra-
tion–mass relation, which leaves only one free parameter,
cannot probe the full sparsity range either. Fixing the
concentration–mass relation artificially reduces the scatter in
the distribution of sparsity estimates compared to expectations

Figure 12. Difference between the prediction of the average sparsity at
Δ = 200 and 500 using the ST-Despali parameterization and the average
sparsity from the N-body halo catalogs of the RayGalGroupSims (blue circles)
and MultiDark-Planck2 (red triangles) at the redshift snapshots of the
simulations.

12 http://xmm-heritage.oas.inaf.it/
13 http://matplotlib.org/
14 The MultiDark-Planck2 simulation consists of a -h1 Gpc 1 3( ) volume
with 38403 N-body particles (corresponding to a mass resolution of
mp = 1.51 · 109 Me h−1) of a flat ΛCDM model with Ωm = 0.3071,
Ωb = 0.048206, h=0.678, ns = 0.96, and σ8 = 0.823 (Klypin et al. 2016);
the RayGalGroupSims simulation has a -h2.625 Gpc 1 3( ) volume with 40963

N-body particles (corresponding to a mass resolution mp = 1.88 · 1010 Me h−1)
of a flat ΛCDM model with Ωm = 0.2573, Ωb = 0.048356, h = 0.72,
ns = 0.963, and σ8 = 0.801.
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from N-body simulations (see, e.g., Ragagnin et al. 2020, for a
recent dedicated analysis). This can be seen in Figure 13, where
the blue circles correspond to sparsity estimates from mass
measurements obtained from a one-parameter fit NFW profile
assuming the concentration–mass relation from Duffy et al.
(2008). For comparison, the red triangles show the estimates
from a two-parameter fit NFW profile. Hence, to avoid any bias
in our analysis, we focus on lensing mass measurements
inferred from two-parameter analyses. It is worth remarking
that weak-lensing masses are measured assuming a cosmolo-
gical framework; however, such a dependence cancels out
when taking mass ratios (Sereno 2015).

Appendix C
Galaxy Cluster Sparsity Outliers

We have identified six clusters in the LC2-single sample that
exhibit sparsity values that significantly differ from the
distribution of the sparsity of clusters in the same redshift bin
as shown in Figure 14. These are A2345, RXC J0528.9–
3927, MS 1054.4–0321, XMMU J1229.4+0151, XLSS
J022303.0–043622, and ISCS J1429.3+3437. As we can see,
outliers have values of the sparsity s200,500> 2.2. Such large
values are a characteristic of unrelaxed/perturbed systems. The
cluster A2345 is at z= 0.176 and appears to be constituted of
two merging subclusters (Bonafede et al. 2009; Boschin et al.
2010). Similarly, RXC J0528.9–3927 (z= 0.284; Foëx et al.
2017) and MS 1054.4–0321 (z= 0.83; Clowe et al. 2000)
appear to be not fully relaxed clusters. The cluster XMMU
J1229.4+0151 (z= 0.98) may also be a perturbed system,
since the lensing convergence map shows the presence of a
second strong peak off-center with respect to the position of the
peak of the X-ray emission and that of the cluster galaxies (Jee
et al. 2011). Finally, XLSS J022303.0–043622 and ISCS
J1429.3+3437 are among the most distant clusters detected to
date at z= 1.22 and 1.26, respectively. However, we found no
information available in the literature on their structural and

dynamical properties that might account for their large values
of sparsity. In order to compare these outliers with the expected
distribution of halo sparsities from numerical simulations, we
plot in Figure 14 the 1σ and 2σ scatter of the halo sparsity from
catalogs of the RayGalGroupSims simulation presented in
Corasaniti et al. (2018).

Figure 13. Sparsity of clusters from mass measurements inferred by fitting the SIS profile (black dots), the one-parameter fit NFW profile with the concentration–mass
relation from Duffy et al. (2008; blue circles), and a two-parameter fit NFW profile (red triangles).

Figure 14. Distribution of the sparsity of the Selected LC2-single clusters in
redshift bins of size Δz = 0.2 containing A2345 (top left panel), RXC
J0528.9–3927 (top right panel), MS 1054.4–0321 and XMMU J1229.4+0151
(bottom left panel), and XLSS J022303.0–043622 and ISCS J1429.3+3437
(bottom right panel). The shaded area corresponds to the 1σ and 2σ scatter of
the halo sparsities estimated for the different redshift bins from the N-body halo
catalogs of the RayGalGroupSims simulation.
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Appendix D
Average Sparsity Consistency Relations

Corasaniti & Rasera (2019) showed that the validity of
Equation (2) also implies the validity of the following relations:

á ñ º »
á ñ
á ñ

»
á ñ
á ñ

s
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M

M

M

M

M

1

1
. D1c

c

c
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c

c
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500
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( )

These provide a set of consistency relations that can be used to
test the consistency of sparsity measurements in galaxy cluster
samples (Corasaniti & Rasera 2019). Here we compute the
different average sparsity estimates for the combined Selected
LC2-single + HSC-XXL sample in redshift bins of size
Δz= 0.1. The results are shown in Figure 15. We can see that
the various determinations are consistent with the ensemble
average sparsity estimates within the uncertainties due to mass
measurement errors.
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